Hypertonic Stress and Amino Acid Deprivation Both Increase Expression of mRNA for Amino Acid Transport System A
نویسندگان
چکیده
The activity of amino acid transport system A (Oxender and Christensen, 1963) is regulated in a variety of different ways, the best studied being the increases of its activity caused by starving cells of amino acids or by exposing them to hypertonicity (for review see McGivan and Pastor-Anglada, 1994). Recently, López-Fontanals et al. (2003) reported in the Journal of General Physiology that hypertonic activation of system A in Chinese hamster ovary (CHO-K1) cells, in contrast to its activation by amino acid deprivation, did not involve increased transcription of the mRNA for one of the system A isoforms. We shall follow the suggestion of Mackenzie and Erickson (2004) and call the isoform SNAT2, for sodium-coupled neutral amino acid transporter 2, instead of ATA2 or SAT2 or SA1. This finding supported a scheme, proposed before the cloning of system A, that features basically different mechanisms of response to these two stresses. The scheme, based on work with CHO-K1 and kidney epithelial (NBL-1) cells, suggests the response to amino acid starvation involves increased synthesis of system A transporters, whereas the response to hypertonicity involves the synthesis of another protein that activates existing system A transporters (RuizMontasell et al., 1994). Unfortunately, however, this neat picture cannot obviously be reconciled with several previous studies, albeit with different cells, that gave contradictory results. There is no problem with the conclusion that the response to amino acid deprivation (also known as “adaptive regulation”) involves increased expression of SNAT2 mRNA. This is consistent with all other reports. For example, amino acid deprivation was shown to increase the abundance of SNAT2 mRNA in cultured human fibroblasts (Franchi-Gazzola et al., 2001), rat C6 glioma cells (Ling et al., 2001), murine T lymphocytes (Trama et al., 2002), and human hepatoma (HepG2) cells (Bain et al., 2002). In both L6 myotubules and 3T3-L1 adipocytes, an increase in abundance of SNAT2 protein followed amino acid deprivation (Hyde et al., 2001). On the other hand, there is no other report that agrees with the different basic response to hypertonicity. In contrast, hypertonicity was found to cause an increase in the amount of SNAT2 mRNA in porcine endothelial cells (Alfieri et al., 2001, 2002), murine inner medullary collecting duct (mIMCD3) cells (Nahm et al., 2002), rat blood brain barrier (TR-BBB13) cells (Takanaga et al., 2002), and murine T lymphocytes (Trama et al., 2002). Since it seemed unlikely to us that the same signal (hypertonicity) activates the same isoform of system A (SNAT2) via a fundamentally different mechanism in CHO-K1 cells, we have checked some of these results. As shown and discussed below, we find that hypertonic stress, like amino acid starvation, does cause an increase in the abundance of SNAT2 mRNA in CHO-K1 cells, as well as in others. Apart from the use of different cells, details of our materials and methods were as described in recent papers (Alfieri et al., 2001, 2004). CHO-K1 cells were provided by the American Type Culture Collection and obtained through the Istituto Zooprofilattico Sperimentale (Brescia, Italy). They were maintained in MEM supplemented with 10% FCS, 1 mM sodium pyruvate, and a mixture of nonessential amino acids. A cDNA probe for human SNAT2 (Sugawara et al., 2000) was supplied by V. Ganapathy (Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA). We found that hypertonic (0.5 OsM) incubation of CHO-K1 cells increased the activity of system A in a manner similar to that noted for other cells examined under similar conditions, with a peak of activity around 9 h followed by a fairly rapid decrease toward the control value. This pattern depends on the concentrations of compatible osmolytes, such as betaine and myo -inositol, in the incubation medium (Alfieri et al., 2002). Amino
منابع مشابه
The Osmoregulatory and the Amino Acid-regulated Responses of System A Are Mediated by Different Signal Transduction Pathways
The osmotic response of system A for neutral amino acid transport has been related to the adaptive response of this transport system to amino acid starvation. In a previous study (Ruiz-Montasell, B., M. Gómez-Angelats, F.J. Casado, A. Felipe, J.D. McGivan, and M. Pastor-Anglada. 1994. Proc. Natl. Acad. Sci. USA. 91:9569-9573), a model was proposed in which both responses were mediated by differ...
متن کاملACELL Apr. 45/4
Dall’Asta, Valeria, Ovidio Bussolati, Roberto Sala, Alessandro Parolari, Francesco Alamanni, Paolo Biglioli, and Gian C. Gazzola. Amino acids are compatible osmolytes for volume recovery after hypertonic shrinkage in vascular endothelial cells. Am. J. Physiol. 276 (Cell Physiol. 45): C865–C872, 1999.—The response to chronic hypertonic stress has been studied in human endothelial cells derived f...
متن کاملAmino acids are compatible osmolytes for volume recovery after hypertonic shrinkage in vascular endothelial cells.
The response to chronic hypertonic stress has been studied in human endothelial cells derived from saphenous veins. In complete growth medium the full recovery of cell volume requires several hours and is neither associated with an increase in cell K+ nor hindered by bumetanide but depends on an increased intracellular pool of amino acids. The highest increase is exhibited by neutral amino acid...
متن کاملInduction of calreticulin expression in response to amino acid deprivation in Chinese hamster ovary cells.
The role of calreticulin as a stress-induced molecular chaperone protein of the endoplasmic reticulum is becoming more apparent. We characterize here the induction of calreticulin in response to complete amino acid deprivation in Chinese hamster ovary cells. Amino acid deprivation caused a 4-fold increase in calreticulin protein levels over a period of 4-10 h. In addition to an overall increase...
متن کاملCompensatory growth, proximate composition and amino acid contents after experiencing cycles of feed deprivation and re-feeding in young yellow catfish (Pelteobagrus fulvidraco R.)
The compensatory growth, proximate composition and amino acid contents changes of young yellow catfish (Pelteobagrus fulvidraco R.) (1.63-1.69 g) had been investigated using a 45-day cyclic feed deprivation and re-feeding experiment. The control group (S0) was fed daily with live tubificid worms (Limnodrilus hoffmeisteri), while the S1/4, S1/2, and S1/1 groups cyclically experienced one-day of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 125 شماره
صفحات -
تاریخ انتشار 2005